1. /**
    
  2.  * Copyright (c) Meta Platforms, Inc. and affiliates.
    
  3.  *
    
  4.  * This source code is licensed under the MIT license found in the
    
  5.  * LICENSE file in the root directory of this source tree.
    
  6.  *
    
  7.  * @flow
    
  8.  */
    
  9. 
    
  10. // Ids are base 32 strings whose binary representation corresponds to the
    
  11. // position of a node in a tree.
    
  12. 
    
  13. // Every time the tree forks into multiple children, we add additional bits to
    
  14. // the left of the sequence that represent the position of the child within the
    
  15. // current level of children.
    
  16. //
    
  17. //      00101       00010001011010101
    
  18. //      ╰─┬─╯       ╰───────┬───────╯
    
  19. //   Fork 5 of 20       Parent id
    
  20. //
    
  21. // The leading 0s are important. In the above example, you only need 3 bits to
    
  22. // represent slot 5. However, you need 5 bits to represent all the forks at
    
  23. // the current level, so we must account for the empty bits at the end.
    
  24. //
    
  25. // For this same reason, slots are 1-indexed instead of 0-indexed. Otherwise,
    
  26. // the zeroth id at a level would be indistinguishable from its parent.
    
  27. //
    
  28. // If a node has only one child, and does not materialize an id (i.e. does not
    
  29. // contain a useId hook), then we don't need to allocate any space in the
    
  30. // sequence. It's treated as a transparent indirection. For example, these two
    
  31. // trees produce the same ids:
    
  32. //
    
  33. // <>                          <>
    
  34. //   <Indirection>               <A />
    
  35. //     <A />                     <B />
    
  36. //   </Indirection>            </>
    
  37. //   <B />
    
  38. // </>
    
  39. //
    
  40. // However, we cannot skip any node that materializes an id. Otherwise, a parent
    
  41. // id that does not fork would be indistinguishable from its child id. For
    
  42. // example, this tree does not fork, but the parent and child must have
    
  43. // different ids.
    
  44. //
    
  45. // <Parent>
    
  46. //   <Child />
    
  47. // </Parent>
    
  48. //
    
  49. // To handle this scenario, every time we materialize an id, we allocate a
    
  50. // new level with a single slot. You can think of this as a fork with only one
    
  51. // prong, or an array of children with length 1.
    
  52. //
    
  53. // It's possible for the size of the sequence to exceed 32 bits, the max
    
  54. // size for bitwise operations. When this happens, we make more room by
    
  55. // converting the right part of the id to a string and storing it in an overflow
    
  56. // variable. We use a base 32 string representation, because 32 is the largest
    
  57. // power of 2 that is supported by toString(). We want the base to be large so
    
  58. // that the resulting ids are compact, and we want the base to be a power of 2
    
  59. // because every log2(base) bits corresponds to a single character, i.e. every
    
  60. // log2(32) = 5 bits. That means we can lop bits off the end 5 at a time without
    
  61. // affecting the final result.
    
  62. 
    
  63. export type TreeContext = {
    
  64.   +id: number,
    
  65.   +overflow: string,
    
  66. };
    
  67. 
    
  68. export const emptyTreeContext = {
    
  69.   id: 1,
    
  70.   overflow: '',
    
  71. };
    
  72. 
    
  73. export function getTreeId(context: TreeContext): string {
    
  74.   const overflow = context.overflow;
    
  75.   const idWithLeadingBit = context.id;
    
  76.   const id = idWithLeadingBit & ~getLeadingBit(idWithLeadingBit);
    
  77.   return id.toString(32) + overflow;
    
  78. }
    
  79. 
    
  80. export function pushTreeContext(
    
  81.   baseContext: TreeContext,
    
  82.   totalChildren: number,
    
  83.   index: number,
    
  84. ): TreeContext {
    
  85.   const baseIdWithLeadingBit = baseContext.id;
    
  86.   const baseOverflow = baseContext.overflow;
    
  87. 
    
  88.   // The leftmost 1 marks the end of the sequence, non-inclusive. It's not part
    
  89.   // of the id; we use it to account for leading 0s.
    
  90.   const baseLength = getBitLength(baseIdWithLeadingBit) - 1;
    
  91.   const baseId = baseIdWithLeadingBit & ~(1 << baseLength);
    
  92. 
    
  93.   const slot = index + 1;
    
  94.   const length = getBitLength(totalChildren) + baseLength;
    
  95. 
    
  96.   // 30 is the max length we can store without overflowing, taking into
    
  97.   // consideration the leading 1 we use to mark the end of the sequence.
    
  98.   if (length > 30) {
    
  99.     // We overflowed the bitwise-safe range. Fall back to slower algorithm.
    
  100.     // This branch assumes the length of the base id is greater than 5; it won't
    
  101.     // work for smaller ids, because you need 5 bits per character.
    
  102.     //
    
  103.     // We encode the id in multiple steps: first the base id, then the
    
  104.     // remaining digits.
    
  105.     //
    
  106.     // Each 5 bit sequence corresponds to a single base 32 character. So for
    
  107.     // example, if the current id is 23 bits long, we can convert 20 of those
    
  108.     // bits into a string of 4 characters, with 3 bits left over.
    
  109.     //
    
  110.     // First calculate how many bits in the base id represent a complete
    
  111.     // sequence of characters.
    
  112.     const numberOfOverflowBits = baseLength - (baseLength % 5);
    
  113. 
    
  114.     // Then create a bitmask that selects only those bits.
    
  115.     const newOverflowBits = (1 << numberOfOverflowBits) - 1;
    
  116. 
    
  117.     // Select the bits, and convert them to a base 32 string.
    
  118.     const newOverflow = (baseId & newOverflowBits).toString(32);
    
  119. 
    
  120.     // Now we can remove those bits from the base id.
    
  121.     const restOfBaseId = baseId >> numberOfOverflowBits;
    
  122.     const restOfBaseLength = baseLength - numberOfOverflowBits;
    
  123. 
    
  124.     // Finally, encode the rest of the bits using the normal algorithm. Because
    
  125.     // we made more room, this time it won't overflow.
    
  126.     const restOfLength = getBitLength(totalChildren) + restOfBaseLength;
    
  127.     const restOfNewBits = slot << restOfBaseLength;
    
  128.     const id = restOfNewBits | restOfBaseId;
    
  129.     const overflow = newOverflow + baseOverflow;
    
  130.     return {
    
  131.       id: (1 << restOfLength) | id,
    
  132.       overflow,
    
  133.     };
    
  134.   } else {
    
  135.     // Normal path
    
  136.     const newBits = slot << baseLength;
    
  137.     const id = newBits | baseId;
    
  138.     const overflow = baseOverflow;
    
  139.     return {
    
  140.       id: (1 << length) | id,
    
  141.       overflow,
    
  142.     };
    
  143.   }
    
  144. }
    
  145. 
    
  146. function getBitLength(number: number): number {
    
  147.   return 32 - clz32(number);
    
  148. }
    
  149. 
    
  150. function getLeadingBit(id: number) {
    
  151.   return 1 << (getBitLength(id) - 1);
    
  152. }
    
  153. 
    
  154. // TODO: Math.clz32 is supported in Node 12+. Maybe we can drop the fallback.
    
  155. const clz32 = Math.clz32 ? Math.clz32 : clz32Fallback;
    
  156. 
    
  157. // Count leading zeros.
    
  158. // Based on:
    
  159. // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/clz32
    
  160. const log = Math.log;
    
  161. const LN2 = Math.LN2;
    
  162. function clz32Fallback(x: number): number {
    
  163.   const asUint = x >>> 0;
    
  164.   if (asUint === 0) {
    
  165.     return 32;
    
  166.   }
    
  167.   return (31 - ((log(asUint) / LN2) | 0)) | 0;
    
  168. }