/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
* @flow
*/
import type {Fiber, FiberRoot} from './ReactInternalTypes';
import type {Transition} from './ReactFiberTracingMarkerComponent';
import type {ConcurrentUpdate} from './ReactFiberConcurrentUpdates';
// TODO: Ideally these types would be opaque but that doesn't work well with
// our reconciler fork infra, since these leak into non-reconciler packages.
export type Lanes = number;
export type Lane = number;
export type LaneMap<T> = Array<T>;
import {
enableSchedulingProfiler,
enableUpdaterTracking,
allowConcurrentByDefault,
enableTransitionTracing,
enableUnifiedSyncLane,
} from 'shared/ReactFeatureFlags';
import {isDevToolsPresent} from './ReactFiberDevToolsHook';
import {ConcurrentUpdatesByDefaultMode, NoMode} from './ReactTypeOfMode';
import {clz32} from './clz32';
// Lane values below should be kept in sync with getLabelForLane(), used by react-devtools-timeline.
// If those values are changed that package should be rebuilt and redeployed.
export const TotalLanes = 31;
export const NoLanes: Lanes = /* */ 0b0000000000000000000000000000000;
export const NoLane: Lane = /* */ 0b0000000000000000000000000000000;
export const SyncHydrationLane: Lane = /* */ 0b0000000000000000000000000000001;
export const SyncLane: Lane = /* */ 0b0000000000000000000000000000010;
export const SyncLaneIndex: number = 1;
export const InputContinuousHydrationLane: Lane = /* */ 0b0000000000000000000000000000100;
export const InputContinuousLane: Lane = /* */ 0b0000000000000000000000000001000;
export const DefaultHydrationLane: Lane = /* */ 0b0000000000000000000000000010000;
export const DefaultLane: Lane = /* */ 0b0000000000000000000000000100000;
export const SyncUpdateLanes: Lane = enableUnifiedSyncLane
? SyncLane | InputContinuousLane | DefaultLane
: SyncLane;
const TransitionHydrationLane: Lane = /* */ 0b0000000000000000000000001000000;
const TransitionLanes: Lanes = /* */ 0b0000000001111111111111110000000;
const TransitionLane1: Lane = /* */ 0b0000000000000000000000010000000;
const TransitionLane2: Lane = /* */ 0b0000000000000000000000100000000;
const TransitionLane3: Lane = /* */ 0b0000000000000000000001000000000;
const TransitionLane4: Lane = /* */ 0b0000000000000000000010000000000;
const TransitionLane5: Lane = /* */ 0b0000000000000000000100000000000;
const TransitionLane6: Lane = /* */ 0b0000000000000000001000000000000;
const TransitionLane7: Lane = /* */ 0b0000000000000000010000000000000;
const TransitionLane8: Lane = /* */ 0b0000000000000000100000000000000;
const TransitionLane9: Lane = /* */ 0b0000000000000001000000000000000;
const TransitionLane10: Lane = /* */ 0b0000000000000010000000000000000;
const TransitionLane11: Lane = /* */ 0b0000000000000100000000000000000;
const TransitionLane12: Lane = /* */ 0b0000000000001000000000000000000;
const TransitionLane13: Lane = /* */ 0b0000000000010000000000000000000;
const TransitionLane14: Lane = /* */ 0b0000000000100000000000000000000;
const TransitionLane15: Lane = /* */ 0b0000000001000000000000000000000;
const RetryLanes: Lanes = /* */ 0b0000011110000000000000000000000;
const RetryLane1: Lane = /* */ 0b0000000010000000000000000000000;
const RetryLane2: Lane = /* */ 0b0000000100000000000000000000000;
const RetryLane3: Lane = /* */ 0b0000001000000000000000000000000;
const RetryLane4: Lane = /* */ 0b0000010000000000000000000000000;
export const SomeRetryLane: Lane = RetryLane1;
export const SelectiveHydrationLane: Lane = /* */ 0b0000100000000000000000000000000;
const NonIdleLanes: Lanes = /* */ 0b0000111111111111111111111111111;
export const IdleHydrationLane: Lane = /* */ 0b0001000000000000000000000000000;
export const IdleLane: Lane = /* */ 0b0010000000000000000000000000000;
export const OffscreenLane: Lane = /* */ 0b0100000000000000000000000000000;
export const DeferredLane: Lane = /* */ 0b1000000000000000000000000000000;
// Any lane that might schedule an update. This is used to detect infinite
// update loops, so it doesn't include hydration lanes or retries.
export const UpdateLanes: Lanes =
SyncLane | InputContinuousLane | DefaultLane | TransitionLanes;
// This function is used for the experimental timeline (react-devtools-timeline)
// It should be kept in sync with the Lanes values above.
export function getLabelForLane(lane: Lane): string | void {
if (enableSchedulingProfiler) {
if (lane & SyncHydrationLane) {
return 'SyncHydrationLane';
}
if (lane & SyncLane) {
return 'Sync';
}
if (lane & InputContinuousHydrationLane) {
return 'InputContinuousHydration';
}
if (lane & InputContinuousLane) {
return 'InputContinuous';
}
if (lane & DefaultHydrationLane) {
return 'DefaultHydration';
}
if (lane & DefaultLane) {
return 'Default';
}
if (lane & TransitionHydrationLane) {
return 'TransitionHydration';
}
if (lane & TransitionLanes) {
return 'Transition';
}
if (lane & RetryLanes) {
return 'Retry';
}
if (lane & SelectiveHydrationLane) {
return 'SelectiveHydration';
}
if (lane & IdleHydrationLane) {
return 'IdleHydration';
}
if (lane & IdleLane) {
return 'Idle';
}
if (lane & OffscreenLane) {
return 'Offscreen';
}
if (lane & DeferredLane) {
return 'Deferred';
}
}
}
export const NoTimestamp = -1;
let nextTransitionLane: Lane = TransitionLane1;
let nextRetryLane: Lane = RetryLane1;
function getHighestPriorityLanes(lanes: Lanes | Lane): Lanes {
if (enableUnifiedSyncLane) {
const pendingSyncLanes = lanes & SyncUpdateLanes;
if (pendingSyncLanes !== 0) {
return pendingSyncLanes;
}
}
switch (getHighestPriorityLane(lanes)) {
case SyncHydrationLane:
return SyncHydrationLane;
case SyncLane:
return SyncLane;
case InputContinuousHydrationLane:
return InputContinuousHydrationLane;
case InputContinuousLane:
return InputContinuousLane;
case DefaultHydrationLane:
return DefaultHydrationLane;
case DefaultLane:
return DefaultLane;
case TransitionHydrationLane:
return TransitionHydrationLane;
case TransitionLane1:
case TransitionLane2:
case TransitionLane3:
case TransitionLane4:
case TransitionLane5:
case TransitionLane6:
case TransitionLane7:
case TransitionLane8:
case TransitionLane9:
case TransitionLane10:
case TransitionLane11:
case TransitionLane12:
case TransitionLane13:
case TransitionLane14:
case TransitionLane15:
return lanes & TransitionLanes;
case RetryLane1:
case RetryLane2:
case RetryLane3:
case RetryLane4:
return lanes & RetryLanes;
case SelectiveHydrationLane:
return SelectiveHydrationLane;
case IdleHydrationLane:
return IdleHydrationLane;
case IdleLane:
return IdleLane;
case OffscreenLane:
return OffscreenLane;
case DeferredLane:
// This shouldn't be reachable because deferred work is always entangled
// with something else.
return NoLanes;
default:
if (__DEV__) {
console.error(
'Should have found matching lanes. This is a bug in React.',
);
}
// This shouldn't be reachable, but as a fallback, return the entire bitmask.
return lanes;
}
}
export function getNextLanes(root: FiberRoot, wipLanes: Lanes): Lanes {
// Early bailout if there's no pending work left.
const pendingLanes = root.pendingLanes;
if (pendingLanes === NoLanes) {
return NoLanes;
}
let nextLanes = NoLanes;
const suspendedLanes = root.suspendedLanes;
const pingedLanes = root.pingedLanes;
// Do not work on any idle work until all the non-idle work has finished,
// even if the work is suspended.
const nonIdlePendingLanes = pendingLanes & NonIdleLanes;
if (nonIdlePendingLanes !== NoLanes) {
const nonIdleUnblockedLanes = nonIdlePendingLanes & ~suspendedLanes;
if (nonIdleUnblockedLanes !== NoLanes) {
nextLanes = getHighestPriorityLanes(nonIdleUnblockedLanes);
} else {
const nonIdlePingedLanes = nonIdlePendingLanes & pingedLanes;
if (nonIdlePingedLanes !== NoLanes) {
nextLanes = getHighestPriorityLanes(nonIdlePingedLanes);
}
}
} else {
// The only remaining work is Idle.
const unblockedLanes = pendingLanes & ~suspendedLanes;
if (unblockedLanes !== NoLanes) {
nextLanes = getHighestPriorityLanes(unblockedLanes);
} else {
if (pingedLanes !== NoLanes) {
nextLanes = getHighestPriorityLanes(pingedLanes);
}
}
}
if (nextLanes === NoLanes) {
// This should only be reachable if we're suspended
// TODO: Consider warning in this path if a fallback timer is not scheduled.
return NoLanes;
}
// If we're already in the middle of a render, switching lanes will interrupt
// it and we'll lose our progress. We should only do this if the new lanes are
// higher priority.
if (
wipLanes !== NoLanes &&
wipLanes !== nextLanes &&
// If we already suspended with a delay, then interrupting is fine. Don't
// bother waiting until the root is complete.
(wipLanes & suspendedLanes) === NoLanes
) {
const nextLane = getHighestPriorityLane(nextLanes);
const wipLane = getHighestPriorityLane(wipLanes);
if (
// Tests whether the next lane is equal or lower priority than the wip
// one. This works because the bits decrease in priority as you go left.
nextLane >= wipLane ||
// Default priority updates should not interrupt transition updates. The
// only difference between default updates and transition updates is that
// default updates do not support refresh transitions.
(nextLane === DefaultLane && (wipLane & TransitionLanes) !== NoLanes)
) {
// Keep working on the existing in-progress tree. Do not interrupt.
return wipLanes;
}
}
return nextLanes;
}
export function getEntangledLanes(root: FiberRoot, renderLanes: Lanes): Lanes {
let entangledLanes = renderLanes;
if (
allowConcurrentByDefault &&
(root.current.mode & ConcurrentUpdatesByDefaultMode) !== NoMode
) {
// Do nothing, use the lanes as they were assigned.
} else if ((entangledLanes & InputContinuousLane) !== NoLanes) {
// When updates are sync by default, we entangle continuous priority updates
// and default updates, so they render in the same batch. The only reason
// they use separate lanes is because continuous updates should interrupt
// transitions, but default updates should not.
entangledLanes |= entangledLanes & DefaultLane;
}
// Check for entangled lanes and add them to the batch.
//
// A lane is said to be entangled with another when it's not allowed to render
// in a batch that does not also include the other lane. Typically we do this
// when multiple updates have the same source, and we only want to respond to
// the most recent event from that source.
//
// Note that we apply entanglements *after* checking for partial work above.
// This means that if a lane is entangled during an interleaved event while
// it's already rendering, we won't interrupt it. This is intentional, since
// entanglement is usually "best effort": we'll try our best to render the
// lanes in the same batch, but it's not worth throwing out partially
// completed work in order to do it.
// TODO: Reconsider this. The counter-argument is that the partial work
// represents an intermediate state, which we don't want to show to the user.
// And by spending extra time finishing it, we're increasing the amount of
// time it takes to show the final state, which is what they are actually
// waiting for.
//
// For those exceptions where entanglement is semantically important,
// we should ensure that there is no partial work at the
// time we apply the entanglement.
const allEntangledLanes = root.entangledLanes;
if (allEntangledLanes !== NoLanes) {
const entanglements = root.entanglements;
let lanes = entangledLanes & allEntangledLanes;
while (lanes > 0) {
const index = pickArbitraryLaneIndex(lanes);
const lane = 1 << index;
entangledLanes |= entanglements[index];
lanes &= ~lane;
}
}
return entangledLanes;
}
function computeExpirationTime(lane: Lane, currentTime: number) {
switch (lane) {
case SyncHydrationLane:
case SyncLane:
case InputContinuousHydrationLane:
case InputContinuousLane:
// User interactions should expire slightly more quickly.
//
// NOTE: This is set to the corresponding constant as in Scheduler.js.
// When we made it larger, a product metric in www regressed, suggesting
// there's a user interaction that's being starved by a series of
// synchronous updates. If that theory is correct, the proper solution is
// to fix the starvation. However, this scenario supports the idea that
// expiration times are an important safeguard when starvation
// does happen.
return currentTime + 250;
case DefaultHydrationLane:
case DefaultLane:
case TransitionHydrationLane:
case TransitionLane1:
case TransitionLane2:
case TransitionLane3:
case TransitionLane4:
case TransitionLane5:
case TransitionLane6:
case TransitionLane7:
case TransitionLane8:
case TransitionLane9:
case TransitionLane10:
case TransitionLane11:
case TransitionLane12:
case TransitionLane13:
case TransitionLane14:
case TransitionLane15:
return currentTime + 5000;
case RetryLane1:
case RetryLane2:
case RetryLane3:
case RetryLane4:
// TODO: Retries should be allowed to expire if they are CPU bound for
// too long, but when I made this change it caused a spike in browser
// crashes. There must be some other underlying bug; not super urgent but
// ideally should figure out why and fix it. Unfortunately we don't have
// a repro for the crashes, only detected via production metrics.
return NoTimestamp;
case SelectiveHydrationLane:
case IdleHydrationLane:
case IdleLane:
case OffscreenLane:
case DeferredLane:
// Anything idle priority or lower should never expire.
return NoTimestamp;
default:
if (__DEV__) {
console.error(
'Should have found matching lanes. This is a bug in React.',
);
}
return NoTimestamp;
}
}
export function markStarvedLanesAsExpired(
root: FiberRoot,
currentTime: number,
): void {
// TODO: This gets called every time we yield. We can optimize by storing
// the earliest expiration time on the root. Then use that to quickly bail out
// of this function.
const pendingLanes = root.pendingLanes;
const suspendedLanes = root.suspendedLanes;
const pingedLanes = root.pingedLanes;
const expirationTimes = root.expirationTimes;
// Iterate through the pending lanes and check if we've reached their
// expiration time. If so, we'll assume the update is being starved and mark
// it as expired to force it to finish.
// TODO: We should be able to replace this with upgradePendingLanesToSync
//
// We exclude retry lanes because those must always be time sliced, in order
// to unwrap uncached promises.
// TODO: Write a test for this
let lanes = pendingLanes & ~RetryLanes;
while (lanes > 0) {
const index = pickArbitraryLaneIndex(lanes);
const lane = 1 << index;
const expirationTime = expirationTimes[index];
if (expirationTime === NoTimestamp) {
// Found a pending lane with no expiration time. If it's not suspended, or
// if it's pinged, assume it's CPU-bound. Compute a new expiration time
// using the current time.
if (
(lane & suspendedLanes) === NoLanes ||
(lane & pingedLanes) !== NoLanes
) {
// Assumes timestamps are monotonically increasing.
expirationTimes[index] = computeExpirationTime(lane, currentTime);
}
} else if (expirationTime <= currentTime) {
// This lane expired
root.expiredLanes |= lane;
}
lanes &= ~lane;
}
}
// This returns the highest priority pending lanes regardless of whether they
// are suspended.
export function getHighestPriorityPendingLanes(root: FiberRoot): Lanes {
return getHighestPriorityLanes(root.pendingLanes);
}
export function getLanesToRetrySynchronouslyOnError(
root: FiberRoot,
originallyAttemptedLanes: Lanes,
): Lanes {
if (root.errorRecoveryDisabledLanes & originallyAttemptedLanes) {
// The error recovery mechanism is disabled until these lanes are cleared.
return NoLanes;
}
const everythingButOffscreen = root.pendingLanes & ~OffscreenLane;
if (everythingButOffscreen !== NoLanes) {
return everythingButOffscreen;
}
if (everythingButOffscreen & OffscreenLane) {
return OffscreenLane;
}
return NoLanes;
}
export function includesSyncLane(lanes: Lanes): boolean {
return (lanes & (SyncLane | SyncHydrationLane)) !== NoLanes;
}
export function includesNonIdleWork(lanes: Lanes): boolean {
return (lanes & NonIdleLanes) !== NoLanes;
}
export function includesOnlyRetries(lanes: Lanes): boolean {
return (lanes & RetryLanes) === lanes;
}
export function includesOnlyNonUrgentLanes(lanes: Lanes): boolean {
// TODO: Should hydration lanes be included here? This function is only
// used in `updateDeferredValueImpl`.
const UrgentLanes = SyncLane | InputContinuousLane | DefaultLane;
return (lanes & UrgentLanes) === NoLanes;
}
export function includesOnlyTransitions(lanes: Lanes): boolean {
return (lanes & TransitionLanes) === lanes;
}
export function includesBlockingLane(root: FiberRoot, lanes: Lanes): boolean {
if (
allowConcurrentByDefault &&
(root.current.mode & ConcurrentUpdatesByDefaultMode) !== NoMode
) {
// Concurrent updates by default always use time slicing.
return false;
}
const SyncDefaultLanes =
InputContinuousHydrationLane |
InputContinuousLane |
DefaultHydrationLane |
DefaultLane;
return (lanes & SyncDefaultLanes) !== NoLanes;
}
export function includesExpiredLane(root: FiberRoot, lanes: Lanes): boolean {
// This is a separate check from includesBlockingLane because a lane can
// expire after a render has already started.
return (lanes & root.expiredLanes) !== NoLanes;
}
export function isTransitionLane(lane: Lane): boolean {
return (lane & TransitionLanes) !== NoLanes;
}
export function claimNextTransitionLane(): Lane {
// Cycle through the lanes, assigning each new transition to the next lane.
// In most cases, this means every transition gets its own lane, until we
// run out of lanes and cycle back to the beginning.
const lane = nextTransitionLane;
nextTransitionLane <<= 1;
if ((nextTransitionLane & TransitionLanes) === NoLanes) {
nextTransitionLane = TransitionLane1;
}
return lane;
}
export function claimNextRetryLane(): Lane {
const lane = nextRetryLane;
nextRetryLane <<= 1;
if ((nextRetryLane & RetryLanes) === NoLanes) {
nextRetryLane = RetryLane1;
}
return lane;
}
export function getHighestPriorityLane(lanes: Lanes): Lane {
return lanes & -lanes;
}
export function pickArbitraryLane(lanes: Lanes): Lane {
// This wrapper function gets inlined. Only exists so to communicate that it
// doesn't matter which bit is selected; you can pick any bit without
// affecting the algorithms where its used. Here I'm using
// getHighestPriorityLane because it requires the fewest operations.
return getHighestPriorityLane(lanes);
}
function pickArbitraryLaneIndex(lanes: Lanes) {
return 31 - clz32(lanes);
}
function laneToIndex(lane: Lane) {
return pickArbitraryLaneIndex(lane);
}
export function includesSomeLane(a: Lanes | Lane, b: Lanes | Lane): boolean {
return (a & b) !== NoLanes;
}
export function isSubsetOfLanes(set: Lanes, subset: Lanes | Lane): boolean {
return (set & subset) === subset;
}
export function mergeLanes(a: Lanes | Lane, b: Lanes | Lane): Lanes {
return a | b;
}
export function removeLanes(set: Lanes, subset: Lanes | Lane): Lanes {
return set & ~subset;
}
export function intersectLanes(a: Lanes | Lane, b: Lanes | Lane): Lanes {
return a & b;
}
// Seems redundant, but it changes the type from a single lane (used for
// updates) to a group of lanes (used for flushing work).
export function laneToLanes(lane: Lane): Lanes {
return lane;
}
export function higherPriorityLane(a: Lane, b: Lane): Lane {
// This works because the bit ranges decrease in priority as you go left.
return a !== NoLane && a < b ? a : b;
}
export function createLaneMap<T>(initial: T): LaneMap<T> {
// Intentionally pushing one by one.
// https://v8.dev/blog/elements-kinds#avoid-creating-holes
const laneMap = [];
for (let i = 0; i < TotalLanes; i++) {
laneMap.push(initial);
}
return laneMap;
}
export function markRootUpdated(root: FiberRoot, updateLane: Lane) {
root.pendingLanes |= updateLane;
// If there are any suspended transitions, it's possible this new update
// could unblock them. Clear the suspended lanes so that we can try rendering
// them again.
//
// TODO: We really only need to unsuspend only lanes that are in the
// `subtreeLanes` of the updated fiber, or the update lanes of the return
// path. This would exclude suspended updates in an unrelated sibling tree,
// since there's no way for this update to unblock it.
//
// We don't do this if the incoming update is idle, because we never process
// idle updates until after all the regular updates have finished; there's no
// way it could unblock a transition.
if (updateLane !== IdleLane) {
root.suspendedLanes = NoLanes;
root.pingedLanes = NoLanes;
}
}
export function markRootSuspended(
root: FiberRoot,
suspendedLanes: Lanes,
spawnedLane: Lane,
) {
root.suspendedLanes |= suspendedLanes;
root.pingedLanes &= ~suspendedLanes;
// The suspended lanes are no longer CPU-bound. Clear their expiration times.
const expirationTimes = root.expirationTimes;
let lanes = suspendedLanes;
while (lanes > 0) {
const index = pickArbitraryLaneIndex(lanes);
const lane = 1 << index;
expirationTimes[index] = NoTimestamp;
lanes &= ~lane;
}
if (spawnedLane !== NoLane) {
markSpawnedDeferredLane(root, spawnedLane, suspendedLanes);
}
}
export function markRootPinged(root: FiberRoot, pingedLanes: Lanes) {
root.pingedLanes |= root.suspendedLanes & pingedLanes;
}
export function markRootFinished(
root: FiberRoot,
remainingLanes: Lanes,
spawnedLane: Lane,
) {
const noLongerPendingLanes = root.pendingLanes & ~remainingLanes;
root.pendingLanes = remainingLanes;
// Let's try everything again
root.suspendedLanes = NoLanes;
root.pingedLanes = NoLanes;
root.expiredLanes &= remainingLanes;
root.entangledLanes &= remainingLanes;
root.errorRecoveryDisabledLanes &= remainingLanes;
root.shellSuspendCounter = 0;
const entanglements = root.entanglements;
const expirationTimes = root.expirationTimes;
const hiddenUpdates = root.hiddenUpdates;
// Clear the lanes that no longer have pending work
let lanes = noLongerPendingLanes;
while (lanes > 0) {
const index = pickArbitraryLaneIndex(lanes);
const lane = 1 << index;
entanglements[index] = NoLanes;
expirationTimes[index] = NoTimestamp;
const hiddenUpdatesForLane = hiddenUpdates[index];
if (hiddenUpdatesForLane !== null) {
hiddenUpdates[index] = null;
// "Hidden" updates are updates that were made to a hidden component. They
// have special logic associated with them because they may be entangled
// with updates that occur outside that tree. But once the outer tree
// commits, they behave like regular updates.
for (let i = 0; i < hiddenUpdatesForLane.length; i++) {
const update = hiddenUpdatesForLane[i];
if (update !== null) {
update.lane &= ~OffscreenLane;
}
}
}
lanes &= ~lane;
}
if (spawnedLane !== NoLane) {
markSpawnedDeferredLane(
root,
spawnedLane,
// This render finished successfully without suspending, so we don't need
// to entangle the spawned task with the parent task.
NoLanes,
);
}
}
function markSpawnedDeferredLane(
root: FiberRoot,
spawnedLane: Lane,
entangledLanes: Lanes,
) {
// This render spawned a deferred task. Mark it as pending.
root.pendingLanes |= spawnedLane;
root.suspendedLanes &= ~spawnedLane;
// Entangle the spawned lane with the DeferredLane bit so that we know it
// was the result of another render. This lets us avoid a useDeferredValue
// waterfall — only the first level will defer.
const spawnedLaneIndex = laneToIndex(spawnedLane);
root.entangledLanes |= spawnedLane;
root.entanglements[spawnedLaneIndex] |=
DeferredLane |
// If the parent render task suspended, we must also entangle those lanes
// with the spawned task, so that the deferred task includes all the same
// updates that the parent task did. We can exclude any lane that is not
// used for updates (e.g. Offscreen).
(entangledLanes & UpdateLanes);
}
export function markRootEntangled(root: FiberRoot, entangledLanes: Lanes) {
// In addition to entangling each of the given lanes with each other, we also
// have to consider _transitive_ entanglements. For each lane that is already
// entangled with *any* of the given lanes, that lane is now transitively
// entangled with *all* the given lanes.
//
// Translated: If C is entangled with A, then entangling A with B also
// entangles C with B.
//
// If this is hard to grasp, it might help to intentionally break this
// function and look at the tests that fail in ReactTransition-test.js. Try
// commenting out one of the conditions below.
const rootEntangledLanes = (root.entangledLanes |= entangledLanes);
const entanglements = root.entanglements;
let lanes = rootEntangledLanes;
while (lanes) {
const index = pickArbitraryLaneIndex(lanes);
const lane = 1 << index;
if (
// Is this one of the newly entangled lanes?
(lane & entangledLanes) |
// Is this lane transitively entangled with the newly entangled lanes?
(entanglements[index] & entangledLanes)
) {
entanglements[index] |= entangledLanes;
}
lanes &= ~lane;
}
}
export function upgradePendingLaneToSync(root: FiberRoot, lane: Lane) {
// Since we're upgrading the priority of the given lane, there is now pending
// sync work.
root.pendingLanes |= SyncLane;
// Entangle the sync lane with the lane we're upgrading. This means SyncLane
// will not be allowed to finish without also finishing the given lane.
root.entangledLanes |= SyncLane;
root.entanglements[SyncLaneIndex] |= lane;
}
export function upgradePendingLanesToSync(
root: FiberRoot,
lanesToUpgrade: Lanes,
) {
// Same as upgradePendingLaneToSync but accepts multiple lanes, so it's a
// bit slower.
root.pendingLanes |= SyncLane;
root.entangledLanes |= SyncLane;
let lanes = lanesToUpgrade;
while (lanes) {
const index = pickArbitraryLaneIndex(lanes);
const lane = 1 << index;
root.entanglements[SyncLaneIndex] |= lane;
lanes &= ~lane;
}
}
export function markHiddenUpdate(
root: FiberRoot,
update: ConcurrentUpdate,
lane: Lane,
) {
const index = laneToIndex(lane);
const hiddenUpdates = root.hiddenUpdates;
const hiddenUpdatesForLane = hiddenUpdates[index];
if (hiddenUpdatesForLane === null) {
hiddenUpdates[index] = [update];
} else {
hiddenUpdatesForLane.push(update);
}
update.lane = lane | OffscreenLane;
}
export function getBumpedLaneForHydration(
root: FiberRoot,
renderLanes: Lanes,
): Lane {
const renderLane = getHighestPriorityLane(renderLanes);
let lane;
if (enableUnifiedSyncLane && (renderLane & SyncUpdateLanes) !== NoLane) {
lane = SyncHydrationLane;
} else {
switch (renderLane) {
case SyncLane:
lane = SyncHydrationLane;
break;
case InputContinuousLane:
lane = InputContinuousHydrationLane;
break;
case DefaultLane:
lane = DefaultHydrationLane;
break;
case TransitionLane1:
case TransitionLane2:
case TransitionLane3:
case TransitionLane4:
case TransitionLane5:
case TransitionLane6:
case TransitionLane7:
case TransitionLane8:
case TransitionLane9:
case TransitionLane10:
case TransitionLane11:
case TransitionLane12:
case TransitionLane13:
case TransitionLane14:
case TransitionLane15:
case RetryLane1:
case RetryLane2:
case RetryLane3:
case RetryLane4:
lane = TransitionHydrationLane;
break;
case IdleLane:
lane = IdleHydrationLane;
break;
default:
// Everything else is already either a hydration lane, or shouldn't
// be retried at a hydration lane.
lane = NoLane;
break;
}
}
// Check if the lane we chose is suspended. If so, that indicates that we
// already attempted and failed to hydrate at that level. Also check if we're
// already rendering that lane, which is rare but could happen.
if ((lane & (root.suspendedLanes | renderLanes)) !== NoLane) {
// Give up trying to hydrate and fall back to client render.
return NoLane;
}
return lane;
}
export function addFiberToLanesMap(
root: FiberRoot,
fiber: Fiber,
lanes: Lanes | Lane,
) {
if (!enableUpdaterTracking) {
return;
}
if (!isDevToolsPresent) {
return;
}
const pendingUpdatersLaneMap = root.pendingUpdatersLaneMap;
while (lanes > 0) {
const index = laneToIndex(lanes);
const lane = 1 << index;
const updaters = pendingUpdatersLaneMap[index];
updaters.add(fiber);
lanes &= ~lane;
}
}
export function movePendingFibersToMemoized(root: FiberRoot, lanes: Lanes) {
if (!enableUpdaterTracking) {
return;
}
if (!isDevToolsPresent) {
return;
}
const pendingUpdatersLaneMap = root.pendingUpdatersLaneMap;
const memoizedUpdaters = root.memoizedUpdaters;
while (lanes > 0) {
const index = laneToIndex(lanes);
const lane = 1 << index;
const updaters = pendingUpdatersLaneMap[index];
if (updaters.size > 0) {
updaters.forEach(fiber => {
const alternate = fiber.alternate;
if (alternate === null || !memoizedUpdaters.has(alternate)) {
memoizedUpdaters.add(fiber);
}
});
updaters.clear();
}
lanes &= ~lane;
}
}
export function addTransitionToLanesMap(
root: FiberRoot,
transition: Transition,
lane: Lane,
) {
if (enableTransitionTracing) {
const transitionLanesMap = root.transitionLanes;
const index = laneToIndex(lane);
let transitions = transitionLanesMap[index];
if (transitions === null) {
transitions = new Set();
}
transitions.add(transition);
transitionLanesMap[index] = transitions;
}
}
export function getTransitionsForLanes(
root: FiberRoot,
lanes: Lane | Lanes,
): Array<Transition> | null {
if (!enableTransitionTracing) {
return null;
}
const transitionsForLanes = [];
while (lanes > 0) {
const index = laneToIndex(lanes);
const lane = 1 << index;
const transitions = root.transitionLanes[index];
if (transitions !== null) {
transitions.forEach(transition => {
transitionsForLanes.push(transition);
});
}
lanes &= ~lane;
}
if (transitionsForLanes.length === 0) {
return null;
}
return transitionsForLanes;
}
export function clearTransitionsForLanes(root: FiberRoot, lanes: Lane | Lanes) {
if (!enableTransitionTracing) {
return;
}
while (lanes > 0) {
const index = laneToIndex(lanes);
const lane = 1 << index;
const transitions = root.transitionLanes[index];
if (transitions !== null) {
root.transitionLanes[index] = null;
}
lanes &= ~lane;
}
}