/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
* @flow
*/
// UpdateQueue is a linked list of prioritized updates.
//
// Like fibers, update queues come in pairs: a current queue, which represents
// the visible state of the screen, and a work-in-progress queue, which can be
// mutated and processed asynchronously before it is committed — a form of
// double buffering. If a work-in-progress render is discarded before finishing,
// we create a new work-in-progress by cloning the current queue.
//
// Both queues share a persistent, singly-linked list structure. To schedule an
// update, we append it to the end of both queues. Each queue maintains a
// pointer to first update in the persistent list that hasn't been processed.
// The work-in-progress pointer always has a position equal to or greater than
// the current queue, since we always work on that one. The current queue's
// pointer is only updated during the commit phase, when we swap in the
// work-in-progress.
//
// For example:
//
// Current pointer: A - B - C - D - E - F
// Work-in-progress pointer: D - E - F
// ^
// The work-in-progress queue has
// processed more updates than current.
//
// The reason we append to both queues is because otherwise we might drop
// updates without ever processing them. For example, if we only add updates to
// the work-in-progress queue, some updates could be lost whenever a work-in
// -progress render restarts by cloning from current. Similarly, if we only add
// updates to the current queue, the updates will be lost whenever an already
// in-progress queue commits and swaps with the current queue. However, by
// adding to both queues, we guarantee that the update will be part of the next
// work-in-progress. (And because the work-in-progress queue becomes the
// current queue once it commits, there's no danger of applying the same
// update twice.)
//
// Prioritization
// --------------
//
// Updates are not sorted by priority, but by insertion; new updates are always
// appended to the end of the list.
//
// The priority is still important, though. When processing the update queue
// during the render phase, only the updates with sufficient priority are
// included in the result. If we skip an update because it has insufficient
// priority, it remains in the queue to be processed later, during a lower
// priority render. Crucially, all updates subsequent to a skipped update also
// remain in the queue *regardless of their priority*. That means high priority
// updates are sometimes processed twice, at two separate priorities. We also
// keep track of a base state, that represents the state before the first
// update in the queue is applied.
//
// For example:
//
// Given a base state of '', and the following queue of updates
//
// A1 - B2 - C1 - D2
//
// where the number indicates the priority, and the update is applied to the
// previous state by appending a letter, React will process these updates as
// two separate renders, one per distinct priority level:
//
// First render, at priority 1:
// Base state: ''
// Updates: [A1, C1]
// Result state: 'AC'
//
// Second render, at priority 2:
// Base state: 'A' <- The base state does not include C1,
// because B2 was skipped.
// Updates: [B2, C1, D2] <- C1 was rebased on top of B2
// Result state: 'ABCD'
//
// Because we process updates in insertion order, and rebase high priority
// updates when preceding updates are skipped, the final result is deterministic
// regardless of priority. Intermediate state may vary according to system
// resources, but the final state is always the same.
import type {Fiber, FiberRoot} from './ReactInternalTypes';
import type {Lanes, Lane} from './ReactFiberLane';
import {
NoLane,
NoLanes,
OffscreenLane,
isSubsetOfLanes,
mergeLanes,
removeLanes,
isTransitionLane,
intersectLanes,
markRootEntangled,
} from './ReactFiberLane';
import {
enterDisallowedContextReadInDEV,
exitDisallowedContextReadInDEV,
} from './ReactFiberNewContext';
import {
Callback,
Visibility,
ShouldCapture,
DidCapture,
} from './ReactFiberFlags';
import getComponentNameFromFiber from './getComponentNameFromFiber';
import {debugRenderPhaseSideEffectsForStrictMode} from 'shared/ReactFeatureFlags';
import {StrictLegacyMode} from './ReactTypeOfMode';
import {
markSkippedUpdateLanes,
isUnsafeClassRenderPhaseUpdate,
getWorkInProgressRootRenderLanes,
} from './ReactFiberWorkLoop';
import {
enqueueConcurrentClassUpdate,
unsafe_markUpdateLaneFromFiberToRoot,
} from './ReactFiberConcurrentUpdates';
import {setIsStrictModeForDevtools} from './ReactFiberDevToolsHook';
import assign from 'shared/assign';
export type Update<State> = {
lane: Lane,
tag: 0 | 1 | 2 | 3,
payload: any,
callback: (() => mixed) | null,
next: Update<State> | null,
};
export type SharedQueue<State> = {
pending: Update<State> | null,
lanes: Lanes,
hiddenCallbacks: Array<() => mixed> | null,
};
export type UpdateQueue<State> = {
baseState: State,
firstBaseUpdate: Update<State> | null,
lastBaseUpdate: Update<State> | null,
shared: SharedQueue<State>,
callbacks: Array<() => mixed> | null,
};
export const UpdateState = 0;
export const ReplaceState = 1;
export const ForceUpdate = 2;
export const CaptureUpdate = 3;
// Global state that is reset at the beginning of calling `processUpdateQueue`.
// It should only be read right after calling `processUpdateQueue`, via
// `checkHasForceUpdateAfterProcessing`.
let hasForceUpdate = false;
let didWarnUpdateInsideUpdate;
let currentlyProcessingQueue: ?SharedQueue<$FlowFixMe>;
export let resetCurrentlyProcessingQueue: () => void;
if (__DEV__) {
didWarnUpdateInsideUpdate = false;
currentlyProcessingQueue = null;
resetCurrentlyProcessingQueue = () => {
currentlyProcessingQueue = null;
};
}
export function initializeUpdateQueue<State>(fiber: Fiber): void {
const queue: UpdateQueue<State> = {
baseState: fiber.memoizedState,
firstBaseUpdate: null,
lastBaseUpdate: null,
shared: {
pending: null,
lanes: NoLanes,
hiddenCallbacks: null,
},
callbacks: null,
};
fiber.updateQueue = queue;
}
export function cloneUpdateQueue<State>(
current: Fiber,
workInProgress: Fiber,
): void {
// Clone the update queue from current. Unless it's already a clone.
const queue: UpdateQueue<State> = (workInProgress.updateQueue: any);
const currentQueue: UpdateQueue<State> = (current.updateQueue: any);
if (queue === currentQueue) {
const clone: UpdateQueue<State> = {
baseState: currentQueue.baseState,
firstBaseUpdate: currentQueue.firstBaseUpdate,
lastBaseUpdate: currentQueue.lastBaseUpdate,
shared: currentQueue.shared,
callbacks: null,
};
workInProgress.updateQueue = clone;
}
}
export function createUpdate(lane: Lane): Update<mixed> {
const update: Update<mixed> = {
lane,
tag: UpdateState,
payload: null,
callback: null,
next: null,
};
return update;
}
export function enqueueUpdate<State>(
fiber: Fiber,
update: Update<State>,
lane: Lane,
): FiberRoot | null {
const updateQueue = fiber.updateQueue;
if (updateQueue === null) {
// Only occurs if the fiber has been unmounted.
return null;
}
const sharedQueue: SharedQueue<State> = (updateQueue: any).shared;
if (__DEV__) {
if (
currentlyProcessingQueue === sharedQueue &&
!didWarnUpdateInsideUpdate
) {
const componentName = getComponentNameFromFiber(fiber);
console.error(
'An update (setState, replaceState, or forceUpdate) was scheduled ' +
'from inside an update function. Update functions should be pure, ' +
'with zero side-effects. Consider using componentDidUpdate or a ' +
'callback.\n\nPlease update the following component: %s',
componentName,
);
didWarnUpdateInsideUpdate = true;
}
}
if (isUnsafeClassRenderPhaseUpdate(fiber)) {
// This is an unsafe render phase update. Add directly to the update
// queue so we can process it immediately during the current render.
const pending = sharedQueue.pending;
if (pending === null) {
// This is the first update. Create a circular list.
update.next = update;
} else {
update.next = pending.next;
pending.next = update;
}
sharedQueue.pending = update;
// Update the childLanes even though we're most likely already rendering
// this fiber. This is for backwards compatibility in the case where you
// update a different component during render phase than the one that is
// currently renderings (a pattern that is accompanied by a warning).
return unsafe_markUpdateLaneFromFiberToRoot(fiber, lane);
} else {
return enqueueConcurrentClassUpdate(fiber, sharedQueue, update, lane);
}
}
export function entangleTransitions(root: FiberRoot, fiber: Fiber, lane: Lane) {
const updateQueue = fiber.updateQueue;
if (updateQueue === null) {
// Only occurs if the fiber has been unmounted.
return;
}
const sharedQueue: SharedQueue<mixed> = (updateQueue: any).shared;
if (isTransitionLane(lane)) {
let queueLanes = sharedQueue.lanes;
// If any entangled lanes are no longer pending on the root, then they must
// have finished. We can remove them from the shared queue, which represents
// a superset of the actually pending lanes. In some cases we may entangle
// more than we need to, but that's OK. In fact it's worse if we *don't*
// entangle when we should.
queueLanes = intersectLanes(queueLanes, root.pendingLanes);
// Entangle the new transition lane with the other transition lanes.
const newQueueLanes = mergeLanes(queueLanes, lane);
sharedQueue.lanes = newQueueLanes;
// Even if queue.lanes already include lane, we don't know for certain if
// the lane finished since the last time we entangled it. So we need to
// entangle it again, just to be sure.
markRootEntangled(root, newQueueLanes);
}
}
export function enqueueCapturedUpdate<State>(
workInProgress: Fiber,
capturedUpdate: Update<State>,
) {
// Captured updates are updates that are thrown by a child during the render
// phase. They should be discarded if the render is aborted. Therefore,
// we should only put them on the work-in-progress queue, not the current one.
let queue: UpdateQueue<State> = (workInProgress.updateQueue: any);
// Check if the work-in-progress queue is a clone.
const current = workInProgress.alternate;
if (current !== null) {
const currentQueue: UpdateQueue<State> = (current.updateQueue: any);
if (queue === currentQueue) {
// The work-in-progress queue is the same as current. This happens when
// we bail out on a parent fiber that then captures an error thrown by
// a child. Since we want to append the update only to the work-in
// -progress queue, we need to clone the updates. We usually clone during
// processUpdateQueue, but that didn't happen in this case because we
// skipped over the parent when we bailed out.
let newFirst = null;
let newLast = null;
const firstBaseUpdate = queue.firstBaseUpdate;
if (firstBaseUpdate !== null) {
// Loop through the updates and clone them.
let update: Update<State> = firstBaseUpdate;
do {
const clone: Update<State> = {
lane: update.lane,
tag: update.tag,
payload: update.payload,
// When this update is rebased, we should not fire its
// callback again.
callback: null,
next: null,
};
if (newLast === null) {
newFirst = newLast = clone;
} else {
newLast.next = clone;
newLast = clone;
}
// $FlowFixMe[incompatible-type] we bail out when we get a null
update = update.next;
} while (update !== null);
// Append the captured update the end of the cloned list.
if (newLast === null) {
newFirst = newLast = capturedUpdate;
} else {
newLast.next = capturedUpdate;
newLast = capturedUpdate;
}
} else {
// There are no base updates.
newFirst = newLast = capturedUpdate;
}
queue = {
baseState: currentQueue.baseState,
firstBaseUpdate: newFirst,
lastBaseUpdate: newLast,
shared: currentQueue.shared,
callbacks: currentQueue.callbacks,
};
workInProgress.updateQueue = queue;
return;
}
}
// Append the update to the end of the list.
const lastBaseUpdate = queue.lastBaseUpdate;
if (lastBaseUpdate === null) {
queue.firstBaseUpdate = capturedUpdate;
} else {
lastBaseUpdate.next = capturedUpdate;
}
queue.lastBaseUpdate = capturedUpdate;
}
function getStateFromUpdate<State>(
workInProgress: Fiber,
queue: UpdateQueue<State>,
update: Update<State>,
prevState: State,
nextProps: any,
instance: any,
): any {
switch (update.tag) {
case ReplaceState: {
const payload = update.payload;
if (typeof payload === 'function') {
// Updater function
if (__DEV__) {
enterDisallowedContextReadInDEV();
}
const nextState = payload.call(instance, prevState, nextProps);
if (__DEV__) {
if (
debugRenderPhaseSideEffectsForStrictMode &&
workInProgress.mode & StrictLegacyMode
) {
setIsStrictModeForDevtools(true);
try {
payload.call(instance, prevState, nextProps);
} finally {
setIsStrictModeForDevtools(false);
}
}
exitDisallowedContextReadInDEV();
}
return nextState;
}
// State object
return payload;
}
case CaptureUpdate: {
workInProgress.flags =
(workInProgress.flags & ~ShouldCapture) | DidCapture;
}
// Intentional fallthrough
case UpdateState: {
const payload = update.payload;
let partialState;
if (typeof payload === 'function') {
// Updater function
if (__DEV__) {
enterDisallowedContextReadInDEV();
}
partialState = payload.call(instance, prevState, nextProps);
if (__DEV__) {
if (
debugRenderPhaseSideEffectsForStrictMode &&
workInProgress.mode & StrictLegacyMode
) {
setIsStrictModeForDevtools(true);
try {
payload.call(instance, prevState, nextProps);
} finally {
setIsStrictModeForDevtools(false);
}
}
exitDisallowedContextReadInDEV();
}
} else {
// Partial state object
partialState = payload;
}
if (partialState === null || partialState === undefined) {
// Null and undefined are treated as no-ops.
return prevState;
}
// Merge the partial state and the previous state.
return assign({}, prevState, partialState);
}
case ForceUpdate: {
hasForceUpdate = true;
return prevState;
}
}
return prevState;
}
export function processUpdateQueue<State>(
workInProgress: Fiber,
props: any,
instance: any,
renderLanes: Lanes,
): void {
// This is always non-null on a ClassComponent or HostRoot
const queue: UpdateQueue<State> = (workInProgress.updateQueue: any);
hasForceUpdate = false;
if (__DEV__) {
currentlyProcessingQueue = queue.shared;
}
let firstBaseUpdate = queue.firstBaseUpdate;
let lastBaseUpdate = queue.lastBaseUpdate;
// Check if there are pending updates. If so, transfer them to the base queue.
let pendingQueue = queue.shared.pending;
if (pendingQueue !== null) {
queue.shared.pending = null;
// The pending queue is circular. Disconnect the pointer between first
// and last so that it's non-circular.
const lastPendingUpdate = pendingQueue;
const firstPendingUpdate = lastPendingUpdate.next;
lastPendingUpdate.next = null;
// Append pending updates to base queue
if (lastBaseUpdate === null) {
firstBaseUpdate = firstPendingUpdate;
} else {
lastBaseUpdate.next = firstPendingUpdate;
}
lastBaseUpdate = lastPendingUpdate;
// If there's a current queue, and it's different from the base queue, then
// we need to transfer the updates to that queue, too. Because the base
// queue is a singly-linked list with no cycles, we can append to both
// lists and take advantage of structural sharing.
// TODO: Pass `current` as argument
const current = workInProgress.alternate;
if (current !== null) {
// This is always non-null on a ClassComponent or HostRoot
const currentQueue: UpdateQueue<State> = (current.updateQueue: any);
const currentLastBaseUpdate = currentQueue.lastBaseUpdate;
if (currentLastBaseUpdate !== lastBaseUpdate) {
if (currentLastBaseUpdate === null) {
currentQueue.firstBaseUpdate = firstPendingUpdate;
} else {
currentLastBaseUpdate.next = firstPendingUpdate;
}
currentQueue.lastBaseUpdate = lastPendingUpdate;
}
}
}
// These values may change as we process the queue.
if (firstBaseUpdate !== null) {
// Iterate through the list of updates to compute the result.
let newState = queue.baseState;
// TODO: Don't need to accumulate this. Instead, we can remove renderLanes
// from the original lanes.
let newLanes = NoLanes;
let newBaseState = null;
let newFirstBaseUpdate = null;
let newLastBaseUpdate: null | Update<State> = null;
let update: Update<State> = firstBaseUpdate;
do {
// An extra OffscreenLane bit is added to updates that were made to
// a hidden tree, so that we can distinguish them from updates that were
// already there when the tree was hidden.
const updateLane = removeLanes(update.lane, OffscreenLane);
const isHiddenUpdate = updateLane !== update.lane;
// Check if this update was made while the tree was hidden. If so, then
// it's not a "base" update and we should disregard the extra base lanes
// that were added to renderLanes when we entered the Offscreen tree.
const shouldSkipUpdate = isHiddenUpdate
? !isSubsetOfLanes(getWorkInProgressRootRenderLanes(), updateLane)
: !isSubsetOfLanes(renderLanes, updateLane);
if (shouldSkipUpdate) {
// Priority is insufficient. Skip this update. If this is the first
// skipped update, the previous update/state is the new base
// update/state.
const clone: Update<State> = {
lane: updateLane,
tag: update.tag,
payload: update.payload,
callback: update.callback,
next: null,
};
if (newLastBaseUpdate === null) {
newFirstBaseUpdate = newLastBaseUpdate = clone;
newBaseState = newState;
} else {
newLastBaseUpdate = newLastBaseUpdate.next = clone;
}
// Update the remaining priority in the queue.
newLanes = mergeLanes(newLanes, updateLane);
} else {
// This update does have sufficient priority.
if (newLastBaseUpdate !== null) {
const clone: Update<State> = {
// This update is going to be committed so we never want uncommit
// it. Using NoLane works because 0 is a subset of all bitmasks, so
// this will never be skipped by the check above.
lane: NoLane,
tag: update.tag,
payload: update.payload,
// When this update is rebased, we should not fire its
// callback again.
callback: null,
next: null,
};
newLastBaseUpdate = newLastBaseUpdate.next = clone;
}
// Process this update.
newState = getStateFromUpdate(
workInProgress,
queue,
update,
newState,
props,
instance,
);
const callback = update.callback;
if (callback !== null) {
workInProgress.flags |= Callback;
if (isHiddenUpdate) {
workInProgress.flags |= Visibility;
}
const callbacks = queue.callbacks;
if (callbacks === null) {
queue.callbacks = [callback];
} else {
callbacks.push(callback);
}
}
}
// $FlowFixMe[incompatible-type] we bail out when we get a null
update = update.next;
if (update === null) {
pendingQueue = queue.shared.pending;
if (pendingQueue === null) {
break;
} else {
// An update was scheduled from inside a reducer. Add the new
// pending updates to the end of the list and keep processing.
const lastPendingUpdate = pendingQueue;
// Intentionally unsound. Pending updates form a circular list, but we
// unravel them when transferring them to the base queue.
const firstPendingUpdate =
((lastPendingUpdate.next: any): Update<State>);
lastPendingUpdate.next = null;
update = firstPendingUpdate;
queue.lastBaseUpdate = lastPendingUpdate;
queue.shared.pending = null;
}
}
} while (true);
if (newLastBaseUpdate === null) {
newBaseState = newState;
}
queue.baseState = ((newBaseState: any): State);
queue.firstBaseUpdate = newFirstBaseUpdate;
queue.lastBaseUpdate = newLastBaseUpdate;
if (firstBaseUpdate === null) {
// `queue.lanes` is used for entangling transitions. We can set it back to
// zero once the queue is empty.
queue.shared.lanes = NoLanes;
}
// Set the remaining expiration time to be whatever is remaining in the queue.
// This should be fine because the only two other things that contribute to
// expiration time are props and context. We're already in the middle of the
// begin phase by the time we start processing the queue, so we've already
// dealt with the props. Context in components that specify
// shouldComponentUpdate is tricky; but we'll have to account for
// that regardless.
markSkippedUpdateLanes(newLanes);
workInProgress.lanes = newLanes;
workInProgress.memoizedState = newState;
}
if (__DEV__) {
currentlyProcessingQueue = null;
}
}
function callCallback(callback: () => mixed, context: any) {
if (typeof callback !== 'function') {
throw new Error(
'Invalid argument passed as callback. Expected a function. Instead ' +
`received: ${callback}`,
);
}
callback.call(context);
}
export function resetHasForceUpdateBeforeProcessing() {
hasForceUpdate = false;
}
export function checkHasForceUpdateAfterProcessing(): boolean {
return hasForceUpdate;
}
export function deferHiddenCallbacks<State>(
updateQueue: UpdateQueue<State>,
): void {
// When an update finishes on a hidden component, its callback should not
// be fired until/unless the component is made visible again. Stash the
// callback on the shared queue object so it can be fired later.
const newHiddenCallbacks = updateQueue.callbacks;
if (newHiddenCallbacks !== null) {
const existingHiddenCallbacks = updateQueue.shared.hiddenCallbacks;
if (existingHiddenCallbacks === null) {
updateQueue.shared.hiddenCallbacks = newHiddenCallbacks;
} else {
updateQueue.shared.hiddenCallbacks =
existingHiddenCallbacks.concat(newHiddenCallbacks);
}
}
}
export function commitHiddenCallbacks<State>(
updateQueue: UpdateQueue<State>,
context: any,
): void {
// This component is switching from hidden -> visible. Commit any callbacks
// that were previously deferred.
const hiddenCallbacks = updateQueue.shared.hiddenCallbacks;
if (hiddenCallbacks !== null) {
updateQueue.shared.hiddenCallbacks = null;
for (let i = 0; i < hiddenCallbacks.length; i++) {
const callback = hiddenCallbacks[i];
callCallback(callback, context);
}
}
}
export function commitCallbacks<State>(
updateQueue: UpdateQueue<State>,
context: any,
): void {
const callbacks = updateQueue.callbacks;
if (callbacks !== null) {
updateQueue.callbacks = null;
for (let i = 0; i < callbacks.length; i++) {
const callback = callbacks[i];
callCallback(callback, context);
}
}
}