======================GeoDjango Database API======================.. _spatial-backends:Spatial Backends================.. module:: django.contrib.gis.db.backends:synopsis: GeoDjango's spatial database backends.GeoDjango currently provides the following spatial database backends:* ``django.contrib.gis.db.backends.postgis``* ``django.contrib.gis.db.backends.mysql``* ``django.contrib.gis.db.backends.oracle``* ``django.contrib.gis.db.backends.spatialite``.. _mysql-spatial-limitations:MySQL Spatial Limitations-------------------------Before MySQL 5.6.1, spatial extensions only support bounding box operations(what MySQL calls minimum bounding rectangles, or MBR). Specifically, MySQL didnot conform to the OGC standard. Django supports spatial functions operating onreal geometries available in modern MySQL versions. However, the spatialfunctions are not as rich as other backends like PostGIS.Raster Support--------------``RasterField`` is currently only implemented for the PostGIS backend. Spatiallookups are available for raster fields, but spatial database functions andaggregates aren't implemented for raster fields.Creating and Saving Models with Geometry Fields===============================================Here is an example of how to create a geometry object (assuming the ``Zipcode``model)::>>> from zipcode.models import Zipcode>>> z = Zipcode(code=77096, poly='POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')>>> z.save():class:`~django.contrib.gis.geos.GEOSGeometry` objects may also be used to save geometric models::>>> from django.contrib.gis.geos import GEOSGeometry>>> poly = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')>>> z = Zipcode(code=77096, poly=poly)>>> z.save()Moreover, if the ``GEOSGeometry`` is in a different coordinate system (has adifferent SRID value) than that of the field, then it will be implicitlytransformed into the SRID of the model's field, using the spatial database'stransform procedure::>>> poly_3084 = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))', srid=3084) # SRID 3084 is 'NAD83(HARN) / Texas Centric Lambert Conformal'>>> z = Zipcode(code=78212, poly=poly_3084)>>> z.save()>>> from django.db import connection>>> print(connection.queries[-1]['sql']) # printing the last SQL statement executed (requires DEBUG=True)INSERT INTO "geoapp_zipcode" ("code", "poly") VALUES (78212, ST_Transform(ST_GeomFromWKB('\\001 ... ', 3084), 4326))Thus, geometry parameters may be passed in using the ``GEOSGeometry`` object, WKT(Well Known Text [#fnwkt]_), HEXEWKB (PostGIS specific -- a WKB geometry inhexadecimal [#fnewkb]_), and GeoJSON (see :rfc:`7946`). Essentially, if theinput is not a ``GEOSGeometry`` object, the geometry field will attempt tocreate a ``GEOSGeometry`` instance from the input.For more information creating :class:`~django.contrib.gis.geos.GEOSGeometry`objects, refer to the :ref:`GEOS tutorial <geos-tutorial>`... _creating-and-saving-raster-models:Creating and Saving Models with Raster Fields=============================================When creating raster models, the raster field will implicitly convert the inputinto a :class:`~django.contrib.gis.gdal.GDALRaster` using lazy-evaluation.The raster field will therefore accept any input that is accepted by the:class:`~django.contrib.gis.gdal.GDALRaster` constructor.Here is an example of how to create a raster object from a raster file``volcano.tif`` (assuming the ``Elevation`` model)::>>> from elevation.models import Elevation>>> dem = Elevation(name='Volcano', rast='/path/to/raster/volcano.tif')>>> dem.save():class:`~django.contrib.gis.gdal.GDALRaster` objects may also be used to saveraster models::>>> from django.contrib.gis.gdal import GDALRaster>>> rast = GDALRaster({'width': 10, 'height': 10, 'name': 'Canyon', 'srid': 4326,... 'scale': [0.1, -0.1], 'bands': [{"data": range(100)}]})>>> dem = Elevation(name='Canyon', rast=rast)>>> dem.save()Note that this equivalent to::>>> dem = Elevation.objects.create(... name='Canyon',... rast={'width': 10, 'height': 10, 'name': 'Canyon', 'srid': 4326,... 'scale': [0.1, -0.1], 'bands': [{"data": range(100)}]},... ).. _spatial-lookups-intro:Spatial Lookups===============GeoDjango's lookup types may be used with any manager method like``filter()``, ``exclude()``, etc. However, the lookup types unique toGeoDjango are only available on spatial fields.Filters on 'normal' fields (e.g. :class:`~django.db.models.CharField`)may be chained with those on geographic fields. Geographic lookups acceptgeometry and raster input on both sides and input types can be mixed freely.The general structure of geographic lookups is described below. A completereference can be found in the :ref:`spatial lookup reference<spatial-lookups>`.Geometry Lookups----------------Geographic queries with geometries take the following general form (assumingthe ``Zipcode`` model used in the :doc:`model-api`)::>>> qs = Zipcode.objects.filter(<field>__<lookup_type>=<parameter>)>>> qs = Zipcode.objects.exclude(...)For example::>>> qs = Zipcode.objects.filter(poly__contains=pnt)>>> qs = Elevation.objects.filter(poly__contains=rst)In this case, ``poly`` is the geographic field, :lookup:`contains <gis-contains>`is the spatial lookup type, ``pnt`` is the parameter (which may be a:class:`~django.contrib.gis.geos.GEOSGeometry` object or a string ofGeoJSON , WKT, or HEXEWKB), and ``rst`` is a:class:`~django.contrib.gis.gdal.GDALRaster` object... _spatial-lookup-raster:Raster Lookups--------------The raster lookup syntax is similar to the syntax for geometries. The onlydifference is that a band index can be specified as additional input. If no bandindex is specified, the first band is used by default (index ``0``). In thatcase the syntax is identical to the syntax for geometry lookups.To specify the band index, an additional parameter can be specified on bothsides of the lookup. On the left hand side, the double underscore syntax isused to pass a band index. On the right hand side, a tuple of the raster andband index can be specified.This results in the following general form for lookups involving rasters(assuming the ``Elevation`` model used in the :doc:`model-api`)::>>> qs = Elevation.objects.filter(<field>__<lookup_type>=<parameter>)>>> qs = Elevation.objects.filter(<field>__<band_index>__<lookup_type>=<parameter>)>>> qs = Elevation.objects.filter(<field>__<lookup_type>=(<raster_input, <band_index>)For example::>>> qs = Elevation.objects.filter(rast__contains=geom)>>> qs = Elevation.objects.filter(rast__contains=rst)>>> qs = Elevation.objects.filter(rast__1__contains=geom)>>> qs = Elevation.objects.filter(rast__contains=(rst, 1))>>> qs = Elevation.objects.filter(rast__1__contains=(rst, 1))On the left hand side of the example, ``rast`` is the geographic raster fieldand :lookup:`contains <gis-contains>` is the spatial lookup type. On the righthand side, ``geom`` is a geometry input and ``rst`` is a:class:`~django.contrib.gis.gdal.GDALRaster` object. The band index defaults to``0`` in the first two queries and is set to ``1`` on the others.While all spatial lookups can be used with raster objects on both sides, not allunderlying operators natively accept raster input. For cases where the operatorexpects geometry input, the raster is automatically converted to a geometry.It's important to keep this in mind when interpreting the lookup results.The type of raster support is listed for all lookups in the :ref:`compatibilitytable <spatial-lookup-compatibility>`. Lookups involving rasters are currentlyonly available for the PostGIS backend... _distance-queries:Distance Queries================Introduction------------Distance calculations with spatial data is tricky because, unfortunately,the Earth is not flat. Some distance queries with fields in a geographiccoordinate system may have to be expressed differently because oflimitations in PostGIS. Please see the :ref:`selecting-an-srid` sectionin the :doc:`model-api` documentation for more details... _distance-lookups-intro:Distance Lookups----------------*Availability*: PostGIS, MariaDB, MySQL, Oracle, SpatiaLite, PGRaster (Native)The following distance lookups are available:* :lookup:`distance_lt`* :lookup:`distance_lte`* :lookup:`distance_gt`* :lookup:`distance_gte`* :lookup:`dwithin` (except MariaDB and MySQL).. note::For *measuring*, rather than querying on distances, use the:class:`~django.contrib.gis.db.models.functions.Distance` function.Distance lookups take a tuple parameter comprising:#. A geometry or raster to base calculations from; and#. A number or :class:`~django.contrib.gis.measure.Distance` object containing the distance.If a :class:`~django.contrib.gis.measure.Distance` object is used,it may be expressed in any units (the SQL generated will use unitsconverted to those of the field); otherwise, numeric parameters are assumedto be in the units of the field... note::In PostGIS, ``ST_Distance_Sphere`` does *not* limit the geometry typesgeographic distance queries are performed with. [#fndistsphere15]_ However,these queries may take a long time, as great-circle distances must becalculated on the fly for *every* row in the query. This is because thespatial index on traditional geometry fields cannot be used.For much better performance on WGS84 distance queries, consider using:ref:`geography columns <geography-type>` in your database instead becausethey are able to use their spatial index in distance queries.You can tell GeoDjango to use a geography column by setting ``geography=True``in your field definition.For example, let's say we have a ``SouthTexasCity`` model (from the:source:`GeoDjango distance tests <tests/gis_tests/distapp/models.py>` ) on a*projected* coordinate system valid for cities in southern Texas::from django.contrib.gis.db import modelsclass SouthTexasCity(models.Model):name = models.CharField(max_length=30)# A projected coordinate system (only valid for South Texas!)# is used, units are in meters.point = models.PointField(srid=32140)Then distance queries may be performed as follows::>>> from django.contrib.gis.geos import GEOSGeometry>>> from django.contrib.gis.measure import D # ``D`` is a shortcut for ``Distance``>>> from geoapp.models import SouthTexasCity# Distances will be calculated from this point, which does not have to be projected.>>> pnt = GEOSGeometry('POINT(-96.876369 29.905320)', srid=4326)# If numeric parameter, units of field (meters in this case) are assumed.>>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, 7000))# Find all Cities within 7 km, > 20 miles away, and > 100 chains away (an obscure unit)>>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, D(km=7)))>>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(mi=20)))>>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(chain=100)))Raster queries work the same way by replacing the geometry field ``point`` witha raster field, or the ``pnt`` object with a raster object, or both. To specifythe band index of a raster input on the right hand side, a 3-tuple can bepassed to the lookup as follows::>>> qs = SouthTexasCity.objects.filter(point__distance_gte=(rst, 2, D(km=7)))Where the band with index 2 (the third band) of the raster ``rst`` would beused for the lookup... _compatibility-table:Compatibility Tables====================.. _spatial-lookup-compatibility:Spatial Lookups---------------The following table provides a summary of what spatial lookups are availablefor each spatial database backend. The PostGIS Raster (PGRaster) lookups aredivided into the three categories described in the :ref:`raster lookup details<spatial-lookup-raster>`: native support ``N``, bilateral native support ``B``,and geometry conversion support ``C``.================================= ========= ======== ========= ============ ========== ========Lookup Type PostGIS Oracle MariaDB MySQL [#]_ SpatiaLite PGRaster================================= ========= ======== ========= ============ ========== ========:lookup:`bbcontains` X X X X N:lookup:`bboverlaps` X X X X N:lookup:`contained` X X X X N:lookup:`contains <gis-contains>` X X X X X B:lookup:`contains_properly` X B:lookup:`coveredby` X X X B:lookup:`covers` X X X B:lookup:`crosses` X X X X C:lookup:`disjoint` X X X X X B:lookup:`distance_gt` X X X X X N:lookup:`distance_gte` X X X X X N:lookup:`distance_lt` X X X X X N:lookup:`distance_lte` X X X X X N:lookup:`dwithin` X X X B:lookup:`equals` X X X X X C:lookup:`exact <same_as>` X X X X X B:lookup:`intersects` X X X X X B:lookup:`isvalid` X X X (≥ 5.7.5) X:lookup:`overlaps` X X X X X B:lookup:`relate` X X X X C:lookup:`same_as` X X X X X B:lookup:`touches` X X X X X B:lookup:`within` X X X X X B:lookup:`left` X C:lookup:`right` X C:lookup:`overlaps_left` X B:lookup:`overlaps_right` X B:lookup:`overlaps_above` X C:lookup:`overlaps_below` X C:lookup:`strictly_above` X C:lookup:`strictly_below` X C================================= ========= ======== ========= ============ ========== ========.. _database-functions-compatibility:Database functions------------------The following table provides a summary of what geography-specific databasefunctions are available on each spatial backend... currentmodule:: django.contrib.gis.db.models.functions==================================== ======= ============== ============ =========== =================Function PostGIS Oracle MariaDB MySQL SpatiaLite==================================== ======= ============== ============ =========== =================:class:`Area` X X X X X:class:`AsGeoJSON` X X X X (≥ 5.7.5) X:class:`AsGML` X X X:class:`AsKML` X X:class:`AsSVG` X X:class:`AsWKB` X X X X X:class:`AsWKT` X X X X X:class:`Azimuth` X X (LWGEOM/RTTOPO):class:`BoundingCircle` X X:class:`Centroid` X X X X X:class:`Difference` X X X X X:class:`Distance` X X X X X:class:`Envelope` X X X X X:class:`ForcePolygonCW` X X:class:`GeoHash` X X (≥ 5.7.5) X (LWGEOM/RTTOPO):class:`Intersection` X X X X X:class:`IsValid` X X X (≥ 5.7.5) X:class:`Length` X X X X X:class:`LineLocatePoint` X X:class:`MakeValid` X X (LWGEOM/RTTOPO):class:`MemSize` X:class:`NumGeometries` X X X X X:class:`NumPoints` X X X X X:class:`Perimeter` X X X:class:`PointOnSurface` X X X X:class:`Reverse` X X X:class:`Scale` X X:class:`SnapToGrid` X X:class:`SymDifference` X X X X X:class:`Transform` X X X:class:`Translate` X X:class:`Union` X X X X X==================================== ======= ============== ============ =========== =================Aggregate Functions-------------------The following table provides a summary of what GIS-specific aggregate functionsare available on each spatial backend. Please note that MySQL does notsupport any of these aggregates, and is thus excluded from the table... currentmodule:: django.contrib.gis.db.models======================= ======= ====== ==========Aggregate PostGIS Oracle SpatiaLite======================= ======= ====== ==========:class:`Collect` X X:class:`Extent` X X X:class:`Extent3D` X:class:`MakeLine` X X:class:`Union` X X X======================= ======= ====== ==========.. rubric:: Footnotes.. [#fnwkt] *See* Open Geospatial Consortium, Inc., `OpenGIS Simple Feature Specification For SQL <https://portal.ogc.org/files/?artifact_id=829>`_, Document 99-049 (May 5, 1999), at Ch. 3.2.5, p. 3-11 (SQL Textual Representation of Geometry)... [#fnewkb] *See* `PostGIS EWKB, EWKT and Canonical Forms <https://postgis.net/docs/using_postgis_dbmanagement.html#EWKB_EWKT>`_, PostGIS documentation at Ch. 4.1.2... [#fndistsphere15] *See* `PostGIS documentation <https://postgis.net/docs/ST_DistanceSphere.html>`_ on ``ST_DistanceSphere``... [#] Refer :ref:`mysql-spatial-limitations` section for more details.